BK channels in microglia are required for morphine-induced hyperalgesia
نویسندگان
چکیده
Although morphine is a gold standard medication, long-term opioid use is associated with serious side effects, such as morphine-induced hyperalgesia (MIH) and anti-nociceptive tolerance. Microglia-to-neuron signalling is critically involved in pain hypersensitivity. However, molecules that control microglial cellular state under chronic morphine treatment remain unknown. Here we show that the microglia-specific subtype of Ca(2+)-activated K(+) (BK) channel is responsible for generation of MIH and anti-nociceptive tolerance. We find that, after chronic morphine administration, an increase in arachidonic acid levels through the μ-opioid receptors leads to the sole activation of microglial BK channels in the spinal cord. Silencing BK channel auxiliary β3 subunit significantly attenuates the generation of MIH and anti-nociceptive tolerance, and increases neurotransmission after chronic morphine administration. Therefore, microglia-specific BK channels contribute to the generation of MIH and anti-nociceptive tolerance.
منابع مشابه
ATP-sensitive Potassium Channels and L-type Calcium Channels are Involved in Morphine-induced Hyperalgesia after Nociceptive Sensitization in Mice
Introduction: We investigated the role of ATP-sensitive potassium channels and L-type calcium channels in morphine-induced hyperalgesia after nociceptive sensitization. Methods: We used a hotplate apparatus to assess pain behavior in male NMRI mice. Nociceptive sensitization was induced by three days injection of morphine and five days of drug free. On day 9 of the schedule, pain behavior te...
متن کاملLipoxin A4 analog attenuates morphine antinociceptive tolerance, withdrawal-induced hyperalgesia, and glial reaction and cytokine expression in the spinal cord of rat.
Spinal neuroinflammation has been shown to play an important role in the development of morphine tolerance and morphine withdrawal-induced hyperalgesia. Lipoxins are endogenous lipoxygenase-derived eicosanoids that can function as "braking signals" in inflammation. The present study investigated the effect of 5 (S), 6 (R)-lipoxin A4 methyl ester (LXA4ME), a stable synthetic analog of lipoxin A4...
متن کاملNifedipine suppresses morphine-induced thermal hyperalgesia: evidence for the role of corticosterone.
It has been shown that systemic administration of morphine induced a hyperalgesic response at an extremely low dose. We have examined the effect of nifedipine, as a calcium channel blocker, on morphine-induced hyperalgesia in intact and adrenalectomized rats and on hypothalamic-pituitary-adrenal axis activity induced by ultra-low dose of morphine. To determine the effect of nifedipine on hypera...
متن کاملThe acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl- channels.
Bradykinin (BK) is an inflammatory mediator and one of the most potent endogenous pain-inducing substances. When released at sites of tissue damage or inflammation, or applied exogenously, BK produces acute spontaneous pain and causes hyperalgesia (increased sensitivity to potentially painful stimuli). The mechanisms underlying spontaneous pain induced by BK are poorly understood. Here we repor...
متن کاملATP-sensitive Potassium Channels and L-type Calcium Channels are Involved in Morphine-induced Hyperalgesia after Nociceptive Sensitization in Mice
INTRODUCTION We investigated the role of ATP-sensitive potassium channels and L-type calcium channels in morphine-induced hyperalgesia after nociceptive sensitization. METHODS We used a hotplate apparatus to assess pain behavior in male NMRI mice. Nociceptive sensitization was induced by three days injection of morphine and five days of drug free. On day 9 of the schedule, pain behavior test ...
متن کامل